Quality is the Measure of Success
Frenco Brochures

A Frenco Main Catalogue

High Precision Gears and Splines H
HH Gear and Spline Manufacture
HPL INO-System Spline Gauges and Special Designs
HPN IC-Gear Artefacts
HPR Master Gears for all Requirements
HWS Profiled Clamping System

Instruments for Size Inspection Series V
VA Measuring Instruments Rocking Type
VD Variable 3-Disc Indicating Gauges
VK Measuring Pins and Measuring Ball Inserts
VM Spline Measuring Instruments VM with Guiding Profile
VP Gear Testing Instruments VP with Face Stop
VY Special Inspection Instruments

Rotation Measuring Systems R
RK Universal Rotation Measuring Instruments with Measuring Circles
RM Multiple Inspector
RWL Linear Gear Flank Analyser Rack
RWS Gear Flank Analyser
RWZ Double Flank Gear Roll Inspection Machines

Gear & Spline Inspection P
P Gear and Spline Inspection

Know-How-Transfer K
KD OF-Documents
KE Effity - Game to learn
KP Spline Standards and Spline Calculation

The latest version of the individual brochures are available for download here:
www.frenco.de/download/brochures
Frenco Company Profile

- The future is already our strength
- Perfection in detail is only achieved by analysing the whole
- Experts at work

Ultra-High Precision H

- Gear Artefacts, IC Gear Artefacts
- Setting Masters, Spline Gauges
- Master Gears
- Profiled Clamping Systems
- Gear Forming Tools
- Gear and Spline Manufacture

Instruments for Size Inspection V

- Measuring Pins and Ball Inserts
- Instruments, Rocking Type
- Instruments with Face Stop
- Instruments with Guiding Profiles

Rotation Measuring Systems R

- Instruments with Measuring Circles
- Multiple Inspector
- Linear Gear Flank Analyser Rack
- Double Flank Gear Roll Inspection
- Gear Flank Analyser

Gear & Spline Inspection P

- Monitoring of Inspection Equipment
- Workpiece Inspections
- Online Inspection Certificate
- DAkkS-Calibration
- VDA-5-Certificate
- Analysis of Deviations
- “All-Tooth-Measurement“ with REANY Evaluation

Know-How-Transfer K

- Software
- Training, Seminars and Workshops
- Consulting and Calculations
- Literature and Documentations
Our mission is to supply tomorrow’s demands today

Future-orientated technologies make great demands on the quality of gears and splines. FRENCO is committed to the full spectrum of quality assurance for all types of gears and splines. Often, standard solutions do not meet the requirements of highly sensitive and complex components and systems. Specialisation, innovative developments and individual solutions are required. FRENCO adopted this strategy from the beginning.

Production Metrology for Gears and Splines

Since 1978, FRENCO has developed from a manufacturer of simple measuring equipment for splines to a system supplier and specialist in the complex area of process integrated quality assurance of gears and splines. The company focuses on flexibility and is open to discussions, ideas and new ways. Basic research, cooperation with institutes and as well as collaborating with partner companies, combined with internal expertise are the foundations for a future-oriented technology.
Perfection in detail is only achieved by analysing the whole

The individual tasks of inspecting gears and splines vary considerably. It is often a very easy process, but can also be a highly complex task from a mechanical or software point of view.

Through training and seminars, FRENCO provides comprehensive technical knowledge more profound and qualified than is currently taught at training institutes.

FRENCO: Knowledge Leader

From selecting suitable gears and splines and determining the conditions of compatibility to optimum inspection methods.

Perfection in detail is only achieved by analysing the whole. This requires both a thorough analysis of the task and consideration of all preceding and subsequent processes.

Tooth profile measuring technology is created from many available technical designs (many of which are patented FRENCO developments) and from new concepts and developments – guaranteeing practical functionality and high efficiency.

FRENCO: Technology Leader

We are engaged in updating and extending technical directives and national and international standards. In this respect our targets go far beyond today’s standards.

FRENCO is represented in these committees and organizations.
Experts at work
Ultra-High Precision for Inspection
Equipment, Tools and Prototypes

Gear Artefacts, IC Gear Artefacts
Setting Masters, Spline Gauges
Master Gears
Profiled Clamping Systems
Gear Forming Tools
Gear and Spline Manufacture

Assured Quality
- certified
Artefacts

Artefacts should have a geometry similar to that of the specimens (=Identity Condition)

The design of conventional artefacts is very different from that of the specimens. There is no similarity, not to mention an identity condition.

IC artefacts can be designed with a similar profile to that of the workpieces to be tested. This is necessary in order to be able to estimate the measuring uncertainty when specimens are inspected on gear measuring machines.

Artefacts should feature all important gear and spline characteristics

Conventional artefacts for gears and splines are individual profile-, helix- or pitch artefacts. Their significance is very restricted.

IC artefact combinations enable the determination of the measurement uncertainty of all important gearing characteristics.

Spur gears	+	Helical gears
Sector gears	+	Composite gears
Left flank	+	Right flank
One space width	+	Opposite space widths
Even number of teeth	+	Odd number of teeth

Profile deviation: For spur and helical gears with left and right hand helix angles.
Helix deviation: For spur and helical gears with left and right hand helix angles.
Pitch deviation: For single and cumulative pitch.
Runout deviation: For runout, position of axis and roundness.
Dimension over balls: For odd and even numbers of teeth.
Artefact A
- Profile
- Helix
- Dimension over balls

Artefact B
- Profile
- Helix
- Pitch
- Runout
- Dimension over balls

Combination Artefact A/B
- „All-in-one“
- Modular
- Lower Cost

Artefact C
- Profile
- Helix
- Dimension over balls

Artefact D
- Profile
- Helix
- Pitch
- Runout
- Dimension over balls
Modification artefact M

- Crownings
- Reliefs
- Angle deviations
- Waviness
- Pitch deviations

DAkkS (Deutsche Akkreditierungsstelle GmbH- German Accreditation Body) calibration certificates are currently issued for IC artefacts A, B and Bm as well as for conventional artefacts type 100, in line with the accredited parameters. DAkkS calibrated artefacts ensure the traceability to the SI unit “metre” and form part of the traceability chain to the national artefact.

The following parameters are calibrated, depending on the design:

- Profile deviation
- Tooth trace deviation
- Pitch deviation
- Runout deviation
- Dimension over balls
Masters for Measuring Instruments

Setting masters are used to calibrate instruments for size inspection. Their tooth form is identical to that of the specimen. Setting masters are usually of the sector type with just two tooth spaces. However, multiple point measurement instruments (Frenco VM nx2) require composite setting masters.

Setting masters with the actual size near the tolerance limit are sufficient, if size inspection instruments are used with mechanical dial gauges or dial indicators. If electronic display units and computers are used, a set of setting and control masters is recommended, to ensure that the electronic spread and the mechanisms are also monitored.

Inspection masters are recommended for all profiled clamping systems. They are used to monitor function and accuracy.

Acceptance masters are used to calibrate inspection systems.

Setting masters for calibration

Control master to monitor measuring instruments

Inspection master for clamping systems

Acceptance master for inspection systems

Inspection masters are recommended for all profiled clamping systems. They are used to monitor function and accuracy.

Acceptance masters are used to calibrate inspection systems.
Spline Gauges

Spline gauges are described in several national, foreign and in the international standard ISO 4156. All these standards differ from one another.

The FRENCO INO system for spline gauges represents a unified standard at the highest technical level.

Spline gauges are available in various designs. For further details see brochure HPL “Spline Gauges”.

Plug Gauges Go & No Go

Ring Gauges Go & No Go

Involute

Involute

Serration

Serration

Straight sided

Straight sided
Master Gears

Master gears are available for single and double flank gear rolling inspection and can be designed according or not according to a standard. FRENCO offers various designs. Even the most stringent requirements can be fulfilled.

Standard

- Quality class B or C
- Chrome steel CSP (low-corrosion)
- Base body in accordance with DIN 3970
- Uncoated, no modifications

Extras

- Quality class A
- High alloyed powder steel SX
- Tip chamfers
- PVD coatings (Quality class B or C)
- Modifications

Special

- Master worms, master pinion gears
- Internal master gears
- Customized base bodies
- Modules smaller than 0.3 mm
- Special coatings
Profiled Clamping Systems

Clamping systems secure workpieces in the gear profile where they are centered and clamped in the tooth flanks. Both testing operations as well as machining processes are possible relative to the tooth flank datum. Arbors are used for internal gearing and chucks for external gearing. The constructive design of these clamping devices is diverse in its implementation. Various clamping methods may be suitable depending on the task at hand. Selection of the most appropriate methods requires expertise and knowledge. Both are offered by the FRENCO specialists as a consequence of their many years of research and experience. The basic definition of the clamping methods should only be undertaken by specialists.

Manufacturing clamping technology

<table>
<thead>
<tr>
<th>Internal gears</th>
<th>External gears</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-flank taper mandrels</td>
<td>Concentricity rings</td>
</tr>
<tr>
<td>Hydraulic arbors</td>
<td>Bevel gear nests</td>
</tr>
<tr>
<td>Mechanical systems</td>
<td>Spring sleeve systems</td>
</tr>
</tbody>
</table>

Inspection clamping technology

- Individual solutions

H
Forming Tools

Profiled punches and dies are used in the non-cutting manufacture of gearing. The accuracy of these tools is transferred directly to the workpiece. Size allowances are incorporated into the tool to accommodate shrinkages. The given spark gaps for electrodes are maintained. Electrodes can be made from copper or graphite.

Spur and helical gearing

Forming punch

Roughing and finishing electrode

External and internal gearing

Toothed matrix

Smoothing gears
FRENCO produces gears and splines made to specification and in small batches. Gears and splines with qualities greater Q5 are difficult to produce with normal methods and manufacturing equipment. FRENCO commercially manufactures spur and helical gearing of qualities DIN Q3 and Q4.

<table>
<thead>
<tr>
<th>Max. workpiece length</th>
<th>external gear/spline</th>
<th>750 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>internal gear/spline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>workpiece size wire EDM</td>
<td>300 mm, 800 x 350 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max. profile length</th>
<th>external gear/spline</th>
<th>700 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>internal gear/spline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for pitch circle up to 30</td>
<td>70 mm</td>
</tr>
<tr>
<td></td>
<td>for pitch circle up to 60</td>
<td>110 mm</td>
</tr>
<tr>
<td></td>
<td>internal gear/spline workpiece size wire EDM</td>
<td>for pitch circle up to 150</td>
</tr>
</tbody>
</table>

| Max. through bore diameter | Grinding | 300 mm |
| | Wire EDM | 220 mm |

Max. pitch circle diameter	external gear/spline	450 mm
	internal gear/spline	ca. 250 mm
	wire EDM	ca. 210 mm

| Min. pitch circle diameter | internal gear/spline | 16-18 mm |

| Max. part weight | 50 kg |

| Materials | grinding | steel, copper, graphite, titanium |
| | wire EDM | steel, copper, copper alloys |

| Gear/spline accuracy | DIN 3962 Q3 |
| | DIN 5480 Q3 |

Inspection machines	Klingelnberg P40
	Mahr Perthometer
	Mahr Precimar ULM 600-E
Size Inspection Instruments
for the Size Over/Between Balls

Measuring Pins and Ball Inserts
Instruments, Rocking Type
Instruments with Face Stop
Instruments with Guiding Profiles

Reliability and precision
for all requirements
Decrease costs, Increase profit

Tailored precision. Improved quality results along with even higher efficiency due to purposeful inspection of individual workpieces.

Superior quality reduces the number of rejects, accelerates procedures and production. Your quality requirements delivered just-in-time.

The foundations for flawless quality...

FRENCO’s series V provides state-of-the-art gear and spline inspection instruments: for transmission technology and mechanical engineering. Bespoke and made to suit your specific applications. Precision for the highest of standards.

... enhance inspection reliability

Whenever technology is “showing teeth”...

Where uncompromising reliability of profiled connections matters...

And where both quality and performance are called for in equal measure...

... FRENCO is there. Throughout the world.

... the new dimension, for all quantities

FRENCO provides the programme for success. The right gear inspection instrument for the right application.

individually manufactured - compliant with all standards - “tailored technology” worldwide
<table>
<thead>
<tr>
<th>type</th>
<th>specification</th>
<th>image</th>
</tr>
</thead>
<tbody>
<tr>
<td>VK</td>
<td>measuring pins and measuring balls</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>Instruments, rocking type</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>Instruments with face stop</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>Instrument with face stop and vertical travel</td>
<td></td>
</tr>
<tr>
<td>VM 1x1</td>
<td>Instruments with guiding profile</td>
<td></td>
</tr>
<tr>
<td>VM nx2</td>
<td>Instruments with guiding profile and nx2 measuring inserts static or dynamic</td>
<td></td>
</tr>
<tr>
<td>L-Dyn</td>
<td>LDYN longitudinal dynamic software</td>
<td></td>
</tr>
<tr>
<td>FAPP</td>
<td>fully automatic inspection systems</td>
<td></td>
</tr>
<tr>
<td>VD</td>
<td>variable 3-disc indicating gauges</td>
<td></td>
</tr>
</tbody>
</table>
The VDA 5-Certificate for Instruments Series V

Uncertainty of inspection equipment U_{MS} acc. to VDA 5

An important requirement laid down in many standards and guidelines of both associations and companies in the automotive industry is the verification of the suitability of the inspection, measuring and test processes.

QS 9000

Monitoring of inspection equipment: Inspection and test equipment capability (11.4)

DIN EN ISO 14253

Standards and guidelines for the inspection by measurement of workpieces and measuring equipment – Decision rules

DIN EN ISO 13005

Determination and expression of uncertainty in measurement

VDA 6.1

Monitoring of inspection equipment: measurement uncertainty (16.3)

FRENCO provides on request
- verification of inspection and test equipment ability for your workpiece (tolerance of size over/between two balls $\geq TOL_{MinUMS}$)
- the uncertainty contribution of the FRENCO inspection instrument (u_{MS}) in determination of the overall uncertainty of your inspection process, on a U_{MS} inspection certificate, based upon VDA 5.

VDA 5 Certificate

- Drawing No.: 61046 10 00 00
- Customer: Musterkunde
- Part No.: 01
- Order number: 20134711
- Type: IVMF 1x1
- $U = 23,4025$
- $L = 23,3483$
- TOL = 0,054
- Resolution: 0,001 (=half scale division)
- Resolution RE in %: 1,8% i.O. => no ure
- if Resolution RE $> 5\%$ than calculate u_{RE}

$$u_{RE} = 0,00 \, \mu m$$

- Measuring uncertainty of setting-master (ref. certificate): $UCAL = 2 \, \mu m$
- Drawing No.: 61046 11 03 00
- Teil 01
- $u_{CAL} = 1,00 \, \mu m$

Repeat measurements on setting ring including probe [µm]:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Result (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1...5</td>
<td>0,0</td>
</tr>
<tr>
<td>6...10</td>
<td>-0,1</td>
</tr>
<tr>
<td>11...15</td>
<td>0,0</td>
</tr>
<tr>
<td>16...20</td>
<td>0,2</td>
</tr>
<tr>
<td>21...25</td>
<td>-0,1</td>
</tr>
</tbody>
</table>

$s_g = 0,138$

Resolution of Probe:

$0,0001$

$C_g = 19,57$
yes, it follows $u_{w} = sg \, 0,03$

$C_{gk} = 19,50$

$u_{EVR} = 0,14 \, \mu m$

Normal Actual value x

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Actual value x (mm)</th>
<th>Measurement x (µm)</th>
<th>Deviation x_{Dev} (mm)</th>
<th>Deviation x_{Dev} (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{mu1}</td>
<td>23,4025</td>
<td>23,4028</td>
<td>0,3</td>
<td>0,28868</td>
</tr>
<tr>
<td>x_{mu2}</td>
<td>23,4025</td>
<td>23,4031</td>
<td>0,6</td>
<td>0,05774</td>
</tr>
<tr>
<td>x_{mu3}</td>
<td>23,4025</td>
<td>23,4031</td>
<td>0,6</td>
<td>0,21602</td>
</tr>
<tr>
<td>x_{mu4}</td>
<td>23,4025</td>
<td>23,4030</td>
<td>0,5</td>
<td>0,09574</td>
</tr>
<tr>
<td>x_{mm1}</td>
<td>23,3754</td>
<td>23,3750</td>
<td>-0,4</td>
<td>0,05774</td>
</tr>
<tr>
<td>x_{mm2}</td>
<td>23,3754</td>
<td>23,3753</td>
<td>-0,1</td>
<td>0,05774</td>
</tr>
<tr>
<td>x_{mm3}</td>
<td>23,3754</td>
<td>23,3755</td>
<td>0,1</td>
<td>0,05774</td>
</tr>
<tr>
<td>x_{mm4}</td>
<td>23,3754</td>
<td>23,3754</td>
<td>0,0</td>
<td>0,05774</td>
</tr>
<tr>
<td>x_{xml1}</td>
<td>23,3483</td>
<td>23,3480</td>
<td>-0,3</td>
<td>0,24537</td>
</tr>
<tr>
<td>x_{xml2}</td>
<td>23,3483</td>
<td>23,3478</td>
<td>-0,5</td>
<td>0,24537</td>
</tr>
<tr>
<td>x_{xml3}</td>
<td>23,3483</td>
<td>23,3479</td>
<td>-0,4</td>
<td>0,24537</td>
</tr>
<tr>
<td>x_{xml4}</td>
<td>23,3483</td>
<td>23,3478</td>
<td>-0,5</td>
<td>0,24537</td>
</tr>
</tbody>
</table>

$u_{BI} = 0,29 \, \mu m$

Uncertainty from linearity and bias u_{BI}

- $u_{UI} = 0,22 \, \mu m$

Expanded uncertainty U_{MS}

$$U_{MS} = 2,10 \, \mu m$$

Capability ratio Q_{MS}

$$Q_{MS} = 8\%$$

Minimum possible tolerance TOL_{MinUMS}

$$TOL_{MinUMS} = 0,021 \, \text{mm}$$

The VDA 5-Certificate for Instruments Series V ensures the verification of the suitability of inspection, measuring, and test processes in the automotive industry. The certificate provides verification of inspection and test equipment capability, ensuring that the measurement uncertainty is within specified limits. FRENCO offers this service on request, including the verification of inspection and test equipment ability for workpieces, the uncertainty contribution of its inspection instruments, and the overall uncertainty of the inspection process on a U_{MS} inspection certificate, based upon VDA 5.
Performance Features

Overview

The different instrument types have different features, which are shown in the following table:

<table>
<thead>
<tr>
<th>measured value display</th>
<th>dial indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital data processing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>radial measuring points</th>
<th>one pair, opposite internal or external</th>
</tr>
</thead>
<tbody>
<tr>
<td>several pairs, opposite internal or external</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>measuring process</th>
<th>manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>automatic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>go gauging</th>
<th>without</th>
</tr>
</thead>
<tbody>
<tr>
<td>integrated</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>axial measuring planes</th>
<th>static</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td></td>
</tr>
</tbody>
</table>

The programme of success

Inspection of the diametrical size over/between two balls. Integrated ‘go inspection’ on request.

- from simple to comprehensive
- from analogue to digital
- from 2 to 6 measuring points
- from static to longitudinal dynamic
- from manual to fully automatic
Measuring Pins and Balls

Measuring pins and balls are used for the dimensional inspection of gears and splines. Measuring pins are only suitable for the inspection of spur gears.

Measuring pins

<table>
<thead>
<tr>
<th>Material</th>
<th>Accuracy</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>± 0.001 mm</td>
<td>Standard items</td>
</tr>
<tr>
<td>Carbide</td>
<td>± 0.001 mm</td>
<td>Precision items</td>
</tr>
<tr>
<td>Carbide</td>
<td>± 0.0005 mm</td>
<td>Gauge inspection</td>
</tr>
<tr>
<td>Carbide</td>
<td>± 0.0003 mm</td>
<td>Masters and artefacts</td>
</tr>
</tbody>
</table>

Measuring tips

<table>
<thead>
<tr>
<th>Design</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2 thread</td>
<td>smaller than 0.75 mm</td>
</tr>
<tr>
<td>M2.5 thread (standard)</td>
<td>smaller than 0.75 mm</td>
</tr>
<tr>
<td>M3 thread</td>
<td>smaller than 0.75 mm</td>
</tr>
</tbody>
</table>

Carbide measuring balls

<table>
<thead>
<tr>
<th>Design (Grade 25, 1500 HV)</th>
<th>for ball ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldered onto shaft, M 2.5 thread, excl. AF</td>
<td>1 to 7 mm</td>
</tr>
<tr>
<td>Soldered onto shaft, M 4 thread, incl. AF</td>
<td>5 to 12 mm</td>
</tr>
<tr>
<td>Ball with internal thread M4</td>
<td>10 to 25 mm</td>
</tr>
</tbody>
</table>
Inspection Instruments Rocking Type

Range of application:
Small and medium sized series. Each measuring point is established by rocking the instrument, until the smallest point of return is found. Profiled setting masters are required. Don’t use these instruments for helical gears or splines with odd number of teeth.

<table>
<thead>
<tr>
<th>IVA</th>
<th>pitch circle Ø</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVA 0</td>
<td>4 - 15 mm</td>
<td></td>
</tr>
<tr>
<td>IVA 1</td>
<td>15 - 28 mm</td>
<td></td>
</tr>
<tr>
<td>IVA 2</td>
<td>28 - 130 mm</td>
<td></td>
</tr>
<tr>
<td>IVA 3</td>
<td>50 - 330 mm</td>
<td></td>
</tr>
<tr>
<td>IVA 4</td>
<td>greater than 190 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVA</th>
<th>pitch circle Ø</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAL 1</td>
<td>0 - 35 mm</td>
<td></td>
</tr>
<tr>
<td>AVAL 2</td>
<td>35 - 70 mm</td>
<td></td>
</tr>
<tr>
<td>AVAL 3</td>
<td>70 - 135 mm</td>
<td></td>
</tr>
<tr>
<td>AVAL 4</td>
<td>135 - 180 mm</td>
<td></td>
</tr>
</tbody>
</table>
The VPO is a simple gear testing machine to determine the diametrical size over two balls in one specific measuring plane.

It can be refitted within a few minutes and is particularly suitable for quick measurements of small pieces up to a PCD of 120 mm.

The balls are mounted on a movable and a fixed carriage. To change the workpiece, the movable carriage can be retracted using the lever on the front.

To display the measuring results both a dial indicator or a digital probe can be used.

Technical specifications VPO

External gears	up to 100 mm PCD
Internal gears	up to 120 mm PCD
Measuring force	infinitely adjustable up to 10 N
Dimensions (without stilts)	185x180x58 mm
Weight approx.	3.3 kg
Inspection Instrument VPE

The VPE is a gear testing machine to determine the diametrical size over two balls in any number of planes. It can be refitted within a few minutes and is mainly used for quick measurements of pieces with a PCD up to approx. 220 mm.

Technical Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>External gears</td>
<td>up to 200 mm PCD</td>
</tr>
<tr>
<td>Internal gears</td>
<td>up to 220 mm PCD</td>
</tr>
<tr>
<td>Vertical travel</td>
<td>30 mm</td>
</tr>
<tr>
<td>Measuring force</td>
<td>infinitely adjustable up to 10 N</td>
</tr>
<tr>
<td>Dimensions (without stilts)</td>
<td>340x118x210 mm</td>
</tr>
<tr>
<td>Weight approx.</td>
<td>11 kg</td>
</tr>
</tbody>
</table>
Inspection Instrument VPOS

The VPOS instrument was designed to measure the dimension over/between balls on large workpieces and splined shafts.

Great importance was given to functionality, optical characteristic and easy handling to ensure that, besides precision and accuracy, a comprehensive objective was achieved. The positioning of the stilts is performed pneumatically, and the feed mechanically dampened. To increase safety, the device can be operated in two-hand mode. The measuring force can be adjusted to the workpiece weight quickly and easily via the lever.

The VPOS is easy to operate and a stable table-top instrument to be used on the shop floor.

Technical specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>External gears</td>
<td>Dimension over balls: 75-260 mm</td>
</tr>
<tr>
<td>Max. shaft diameter</td>
<td>up to ø60 mm (in standard version)</td>
</tr>
<tr>
<td>Max. shaft shoulder length</td>
<td>up to 108 mm (extendable)</td>
</tr>
<tr>
<td>Measuring force</td>
<td>infinitely adjustable up to 15 N</td>
</tr>
<tr>
<td>Dimension (without stilts)</td>
<td>340x210x118 mm</td>
</tr>
<tr>
<td>Weight approx.</td>
<td>25 kg</td>
</tr>
</tbody>
</table>

Lever to infinitely adjust the measuring force
Inspection Instrument AVM 1x1

AVM 1x1 instruments have a profiled guidance ring, a measuring insert with two carbide measuring balls and come with either a dial indicator or a digital measurement display. The guiding profile can also be supplied as go gauge. A measuring stand is also available for simplified handling:

The AVM 1x1 instruments are usually used for measuring medium-sized workpiece batches.

Inspection instrument IVM 1x1

IVM 1x1 have a profiled guidance plug, a measuring insert with two carbide measuring balls, a handle or a measuring stand and a dial indicator or a digital display. Both measuring ball inserts are mechanically connected.

The guiding profile can also be supplied as go gauge.

IVM 1x1 are mainly used for the measurement of medium-sized batches.
Inspection Instrument AVM nx2 K

<table>
<thead>
<tr>
<th>measured value display</th>
<th>radial measuring points</th>
<th>go gauging</th>
<th>axial measuring planes</th>
<th>inspection process</th>
</tr>
</thead>
</table>
| | | | | (

<table>
<thead>
<tr>
<th>AVM 1x2 K</th>
<th>AVM 2x2 K</th>
<th>AVM 3x2 K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All VM nx2 measuring instruments from Frenco have multiple measuring inserts. To determine the diametrical size over two balls, two inductive probes (located opposite each other) are added together.

The types nx2 K use carbide measuring ball inserts, which are screwed into the inductive probes. Worn measuring balls can be replaced.

Due to the major wear of the measuring balls, the measuring instruments VM nx2 K are only suitable for small and medium-sized batches. Larger batches or hardened workpieces are best inspected with VM nx2 RS instruments, which work with radius disks.

Type AVM nx2 K with longitudinal dynamic adapter on measuring stand with setting master and control plug.
Inspection Instrument AVM nx2 RS

Functionality

<table>
<thead>
<tr>
<th>measured value display</th>
<th>radial measuring points</th>
<th>go gauging</th>
<th>axial measuring planes</th>
<th>inspection process</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVM 1x2 RS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVM 2x2 RS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVM 3x2 RS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVM nx2 RS instruments are working with radius disks and not with measuring balls. They are clamped in a floating insert and can be turned. The wear of radius disks is much lower than that of measuring balls. Thanks to the option of turning the disks, wear does not pose a problem. AVM RS measuring instruments have a simple design, are very robust and easy to handle.

RS instruments are suitable for automation. They are therefore particularly suitable for large series, before and after hardening.

Features

- **AVM 3x2 RS**: 3x2 floating inserts with radius disk

Typ AVM nx2 RS with longitudinal dynamic adapted on measuring stand

AVM 3x2 RS: 3x2 floating inserts with radius disk
Inspection Instrument IVM nx2 RS

<table>
<thead>
<tr>
<th>measured value display</th>
<th>radial measuring points</th>
<th>go gauging</th>
<th>axial measuring planes</th>
<th>inspection process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AVM 1x2 RS</th>
<th>AVM 2x2 RS</th>
<th>AVM 3x2 RS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measuring instruments with multiple measuring points for the measurement of the size between balls require, due to their limited space, some clever engineering. That is why IVM nx2 are always equipped with radius disks. The radius disks are mounted on floatingly suspended measuring levers. They are turnable if the clamping is loosened.

IVM nx2 RS are suitable for automation with FAPP-Systems.

Typ IVM nx2 RS with longitudinal dynamic adapter
Tripod Inspection instrument IVM 3x1 K

<table>
<thead>
<tr>
<th>measured value display</th>
<th>radial measuring points</th>
<th>axial measuring planes</th>
<th>inspection process</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IVM 3x1 K is used to measure tripod ball tracks. This version is only available with a longitudinal dynamic adapter. To guarantee a best possible adaption in the ball track, the three ball insert pairs are clamped in a floating insert.

The measuring inserts for gothic contours have two-point contact. Those for the ball tracks have single-contact.

IVM 3x1 K with dynamic adapter, Tripod with gothic contour

Measuring head with measuring ball inserts and distance bolt
Measurement Software L-Dyn

All gear testing instruments with adapter are suitable for dynamic measurements. The travel of the table or the bars is assigned to one measurement reading and recorded. The workpiece can therefore be measured in hundreds of planes and the values can be evaluated on a PC.

The measurement enables the determination of the dimension over balls and the evaluation of the following values:

- tapering
- crowning
- roundness

Interfaces for your database and QS-Stat are available.

Furthermore, the data can be exported to Excel. It is therefore possible to evaluate several data sets. When a workpiece is measured before and after hardening, the quenching distortion can also be determined.

Workbench Set-Up

L-Dyn systems reach pure perfection when they are set up on a FRENCO workbench: the wiring and electronic systems are securely and invisibly stored away and the control masters are protected against damage in the drawers.

When a measurement is complete the values are marked in colour:

- green: Measured value within accepted tolerance
- yellow: Measured value outside intervention limits
- red: Measured value outside accepted tolerance
Our FAPP system enables automatic inspections of internal and external splines. Integrated in a production line, a cycle time of about 10 s can be achieved.

All FRENCO gear inspection machines type VM nx2 RS can be automated with the FAPP-System.

The FAPP-Systems are designed as autonomous units. They are equipped with a pneumatic and electric control for the motion processes of the fitting unit and that of the linear feed. Interfaces for the communication with handling machines are standard. Further interfaces are optional.

FRENCO also offers complete FAPP inspection cells with integrated handling systems and sorting units.
Variable 3-Disc Indicating Gauges VD

Circumferential backlash measuring instruments have three composite profile discs. The two outer discs are rigid while the middle disc can be easily rotated by means of spring force. This causes a change in the tooth position, which is shown by a dial indicator or an inductive probe.

The measuring instrument is set to zero using a composite setting master, which embodies the limit of an effective spline. The distance of rotation is then shown in comparison to the setting master. The actual position of the effective spline within the tolerance zone can now be assessed.

This value allows the stability of the manufacturing process with regards to the overlay of individual geometry errors to be monitored.

To analyse the mounting forces, the effective spline, as measured with this instrument, must be combined with the actual dimensions.

FRENCO also offer software for this purpose. It determines the difference between actual and effective and offers important information with regard to the

- press capacities
- quality of the gearing
- overlay of individual form errors

Circumferential backlash measuring instruments are always offered with setting master and check master to verify the shown distance of rotation. This is to ensure the plausibility of the results.

Every gauge is delivered with a setting and control master.
Rotation Measuring Instruments
for Measuring Results All Around

Instruments with Measuring Circles
Multiple Inspector
Double Flank Gear Roll Inspection
Gear Flank Analyser

More information
for greater validity
The Product Range

Rotation measuring instruments are based on one or two rotational axes. Simple solutions for rotation-symmetric specimens are achieved when combined with one or two linear axes. Whether manual or automatic, horizontal or vertical, the areas of application are versatile and flexible. Rotation measuring devices are usually positioned directly in the manufacturing environment and reduce the workload of the measuring machines in the inspection room.

<table>
<thead>
<tr>
<th>type</th>
<th>specification</th>
<th>image</th>
</tr>
</thead>
<tbody>
<tr>
<td>URM HGM</td>
<td>horizontal with tip center manual</td>
<td></td>
</tr>
<tr>
<td>URM HGAL</td>
<td>horizontal with tip center automatic light</td>
<td></td>
</tr>
<tr>
<td>URM HGAS</td>
<td>horizontal with tip center automatic heavy</td>
<td></td>
</tr>
<tr>
<td>URM VA</td>
<td>vertical automatic</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RM horizontal</td>
<td>multiple inspector</td>
<td></td>
</tr>
<tr>
<td>RM vertikal</td>
<td>multiple inspector</td>
<td></td>
</tr>
<tr>
<td>RWL rack</td>
<td>double flank gear roll inspection of racks</td>
<td></td>
</tr>
<tr>
<td>ZWP 06</td>
<td>double flank gear roll inspection for small gears</td>
<td></td>
</tr>
</tbody>
</table>
| ZWP 14/24 | - double flank gear roll inspection
- robust
- pneumatic slide possible |
<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZWP 18</td>
<td>- double flank gear roll inspection - highest precision</td>
</tr>
<tr>
<td>ZWP 30</td>
<td>double flank gear roll inspection for large gear wheels, shafts and worms</td>
</tr>
<tr>
<td>WSG</td>
<td>- scanning gear inspection - comprehensive evaluation in shortest time - for larger series</td>
</tr>
<tr>
<td>WSM</td>
<td>- scanning gear inspection - comprehensive evaluation in shortest time - for larger series - adaptable</td>
</tr>
</tbody>
</table>
Universal Rotation Measuring Instruments with Measuring Ball URM-K

URM-K feature a high precision rotational axis and two linear axes. All three axes are manually operated in the manual version HM and evaluated using a PC. The automatic types work with three NC-controlled axes.

The URM-K instruments measure the diameters and the gear teeth. Probing of the gear flanks takes place whilst in double flank contact. The measuring balls are located on a turret, which is operated manually or automatically.

<table>
<thead>
<tr>
<th>Technical data</th>
<th>HGM</th>
<th>HGAL</th>
<th>HGAS</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>part max. length/height</td>
<td>750 mm</td>
<td>750 mm</td>
<td>750 mm</td>
<td>300 mm</td>
</tr>
<tr>
<td>max. external Ø</td>
<td>230 mm</td>
<td>230 mm</td>
<td>230 mm</td>
<td>300 mm</td>
</tr>
<tr>
<td>min. internal Ø</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>min. pitch circle Ø</td>
<td>20 mm</td>
<td>20 mm</td>
<td>30 mm</td>
<td>40 mm</td>
</tr>
<tr>
<td>max. weight</td>
<td>15 kg</td>
<td>15 kg</td>
<td>30 kg</td>
<td>20 kg</td>
</tr>
<tr>
<td>measurement range slide</td>
<td>65 mm</td>
<td>85 mm</td>
<td>85 mm</td>
<td>150 mm</td>
</tr>
<tr>
<td>horizontal/vertical slide</td>
<td>400 mm</td>
<td>750 mm</td>
<td>750 mm</td>
<td>300 mm</td>
</tr>
<tr>
<td>measurement sequence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>automatic</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>clamping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>between tips manual</td>
<td>●</td>
<td>●</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>between tips automatic</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>with triple jaw chuck</td>
<td>○</td>
<td>○</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>profiled setting master</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ground shafts</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>change of balls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>automatic with turret</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

● standard ○ optional
URM-HGM-manual

Manual rotation measuring instruments have 3 axes which are operated manually.

They are particularly suitable for random inspections during production.

URM-HGAL-automatic

The three axes are NC-controlled. A measuring program coordinates the automatic measuring process.

URM-HGAS-automatic

These devices feature three NC controlled axes and a tip center that can be programmed.

The tip center is pneumatically activated and can be integrated into the measurement process.

URM-VA-automatic

The vertical automatic URM instruments are delivered on a work bench, fully wired.

The vertical stroke is generated via ribbons equipped with a counterbalance for compensation.
Multiple Inspector RM

RM - horizontal

The typical place of use of URM-R/W inspection machines is directly next to the production machine. They can be used for quick random checks and are perfect for a 100 percent inspection.

Technical data

<table>
<thead>
<tr>
<th>Part</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. length</td>
<td>750 mm</td>
</tr>
<tr>
<td>max. external Ø</td>
<td>230 mm</td>
</tr>
<tr>
<td>min. pitch circle Ø</td>
<td>20 mm</td>
</tr>
<tr>
<td>max. weight</td>
<td>15 kg</td>
</tr>
<tr>
<td>slide</td>
<td>85 mm</td>
</tr>
</tbody>
</table>

Measurement sequence

- automatic

Clamping

- between tips automatic

Calibration

- profiled setting master
- ground shafts
 - standard
 - optional

Measurement of splines

Double flank gear roll inspection of two gears.

Measurement of a crankshaft

Measuring slide for splines.

Measurement of a shaft

5 measuring slides for 5 splines with index measurement. Prepared for automatic loading.
Special Designs

RM - vertical

Double flank gear rolling inspection with special evaluation for steering pinions.

Double flank rolling inspection machine with a vertical slide and a tailstock.
Software RMpro for Multiple Inspector

The RMpro software is used to measure and evaluate shafts with any number of measuring points. These measuring points can be: radial run-out, axial run-out, master gear or master wheel. The software provides a kind of modular system of components, measuring points, measurements, evaluations and representations.

The inspection plan is made up from the following lists: components, measurements, evaluations, representations and data exports. This ensures that measurements can be attached to components, and evaluations to measurements.

Axial position

Calculation of the axial position of the shaft can be carried out by linking the results of one to three measuring points. Individual measurements can then also be corrected using the established axial position.

Tolerance bar graph, evaluation graph, radial run-out diagram, axial run-out diagram, ZWP diagrams, master wheel diagram. An overview is available for the entire workpiece.
The measured values can also be viewed individually.

User Management
Integrated user management with user configurable group rights.

Data export
Export of the data in QS-Stat format.

System requirements
The software requires at least Windows 7 and the .NET Runtime Version 4.0.
RWL Rack

RWL inspection machines are suitable for quick and easy quality controls that are based on the double flank gear roll method.

Horizontal slide
The workpiece is clamped pneumatically. The carriage is driven by an electric motor. The feed force is limited by a sliding clutch.

Measurement tower
The measurement tower is equipped with all necessary measuring systems. A measuring probe determines the tower’s vertical stroke and an angular measurement system determines the configured pinion position.

Technical data

<table>
<thead>
<tr>
<th>part</th>
<th>max. length</th>
<th>max. external Ø</th>
<th>min. external Ø</th>
<th>measurement</th>
<th>measurement sequence</th>
<th>clamping</th>
<th>calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>slide</td>
<td>automatic</td>
<td>grab, proceeding</td>
<td>setting master</td>
</tr>
<tr>
<td>RWL rack</td>
<td>1000 mm</td>
<td>40 mm</td>
<td>21 mm</td>
<td></td>
<td></td>
<td></td>
<td>standard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o optional</td>
</tr>
</tbody>
</table>

Figure: Technical data table showing the specifications of the RWL Rack.
Software for RWL Rack

“Rise and Fall” View

Displays the pitch curve f'', plus nominal graph and tolerance area (green).

The short-wave components of the tooth-to-tooth radial composite deviation f'' are displayed separately.

Displays the coloured measurement results. Green: PASS, red: FAIL

“Rack Gain” View

The rack gain is the calculated, covered track on the rack after one rotation of the master pinion gear.

The minimum and maximum values are displayed as min. and max. transmission ratio.
Double Flank Gear Roll Inspection Machines ZWP

The basic principle of the double flank gear roll inspection is that a master gear (nearly perfect gear) and a work-piece gear are meshing free from backlash. One axis of rotation is mounted firmly and the other is mounted in a floating manner. The variations in distance when rolling the two gears are detected and form the basis for the evaluation of the gear profile with respect to the existing composite error caused by production.

When used with modern evaluation solutions such as a PC, hardware and software, the double flank gear roll inspection proves to be an efficient means of controlling the quality in a quick and easy way.

Advantages of FRENCO’s double flank gear roll inspection machines:

- Stable machines for the shop floor use.
- Customer-specific design: The machines are perfectly adjusted to the specimen to be measured and to the conditions of measurement.
- The measuring force is infinitely variable.
- Rapid lift-off of the measurement carriage.
- Using non-rotating tips and mounting mandrels, the runout deviation is kept low.
- Special master gear pair for calibration.
- With the evaluation software FGI pro being in-house developed, quick support is available should any issues arise.
- Elektronik MEG 32 of own development, produced in Germany. Quick support!
- The master gears are manufactured in-house at FRENCO in Altdorf, Germany.
- On request, we can upgrade older double flank gear roll inspection machines with FRENCO measurement electronics and the FGI evaluation software.

Measurement of Geometries:

- spur gears
- helical gears
- worms
- pinion and gear
- pinion and worm
- oil pump gear
Double Flank Gear Roll Inspection Machines features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>ZWP 06</th>
<th>ZWP 14/24*</th>
<th>ZWP 18</th>
<th>ZWP 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre distance</td>
<td>12 – 85 mm</td>
<td>12 – 85 mm</td>
<td>45 – 170 (280)* mm</td>
<td>45 – 175 mm</td>
</tr>
<tr>
<td>Centre distance with adapter for small centre distances</td>
<td>1 mm</td>
<td>1 mm</td>
<td>15 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>Max. diameter of specimen with steady centre attachment</td>
<td>80 mm</td>
<td>80 mm</td>
<td>400 (430)* mm</td>
<td>160 (300)* mm</td>
</tr>
<tr>
<td>Max. diameter of specimen with extension adapter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>300 mm</td>
</tr>
<tr>
<td>Centre height size 1</td>
<td>-</td>
<td>40–100 mm</td>
<td>60 – 220 mm</td>
<td>220 - 360 mm</td>
</tr>
<tr>
<td>Centre height size 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Centre height size 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Range for height adjustable single end mounting</td>
<td>○</td>
<td>on request</td>
<td>100 mm</td>
<td>200 mm</td>
</tr>
<tr>
<td>2nd steady centre attachment</td>
<td>-</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Adjustment of measuring force</td>
<td>0 – 5 N</td>
<td>possible within limits</td>
<td>0 – 20 N</td>
<td>0 – 50 N</td>
</tr>
<tr>
<td>Glass scale</td>
<td>○</td>
<td>-</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Sensor for corrections of deviations of master gears</td>
<td>on request</td>
<td>○</td>
<td>on request</td>
<td>on request</td>
</tr>
<tr>
<td>Range of application</td>
<td>small workpieces and plastic gears</td>
<td>large workpieces; robust for shop floor use</td>
<td>medium-sized workpieces; suitable for inspection laboratories</td>
<td>large wheels, worms and shafts, designed for heavy weights</td>
</tr>
<tr>
<td>Motor drive</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>○</td>
</tr>
</tbody>
</table>

Version ZWP 24 is identical to ZWP 14, but has a larger machine base.

● standard ○ optional
The universal measuring machine for small yet highly precise gears

The double flank gear roll inspection machine is specially designed for small high-precision gears. It is also suitable for plastic gears. The measuring force can be lowered to 0 N.

The sophisticated design is extraordinarily precise and sensitive. The measuring carriage is supported free from backlash on four leaf springs. This so-called parallelogram suspension is very sensitive and registers even the smallest change in centre distance.

The measurement process is motor driven by default. We recommend the FRENCO Software ‘FGI pro’ for the evaluation. This will enable you to control the quality of your workpieces easily, efficiently and reliably.

An extensive range of accessories meets all requirements.
ZWP 14/24

Simple, robust, designed for shop-floor use

The ZWP 14 is the most robust double flank gear roll inspection machine of this product family and ideal for use on the shop-floor.

This machine can be driven manually or by motor. The centre distance can be adjusted manually via an adjustable adapter disc.

The measurement results are displayed on a dial indicator. An evaluation using our software FGI Pro is only possible if the machine is motorised.

The extensive range of accessories allows an individual customization to your requirements. Individual solutions for your measuring tasks are also possible.
ZWP 18

Highest precision and comfortable handling

The high quality ZWP 18 features a sophisticated setup and allows high precision measurements.

The centre distance can be changed easily and quickly by adjusting the measuring carriage with a handwheel. The adjustable mandrel allows simple and convenient adjustment of the height of the gears to be inspected. Many accessory items can easily be attached to the instrument.

The drive is integrated into the device. To ensure highest precision, the measuring carriages are mounted on very smooth guideways.

ZWP 18 with steady centre attachment

ZWP 18 with worm gear attachment
ZWP 30

The specialist for large gear wheels, shafts and worms

With ZWP 30 it is possible to measure gears and splines with a pitch circle diameter of up to 550 mm and shafts with a length of up to 600 mm.

The design is stable and optimized for the shop-floor use. The workpieces’ large dimensions and heavy weight require special components to be installed.

A granite machine bed forms the base of the ZWP 30 onto which the measurement carriage and mounting attachments for the workpiece and master gear are installed. Despite heavy weight loads, it is important for the measurement carriage to move smoothly, precisely and free from backlash, which is ensured by the cross roller guides.

The changeover for the inspection of other specimens is easily and quickly to handle. Depending on the customer’s requirement, the measurements are carried out manually or automatically. The evaluation is carried out via a dial indicator or FRENCO’s FGI pro software.
The software FGI pro includes both, the control of the drive and the evaluation of data. The software is in-house developed and programmed by our specialists for applications software. With the actual values being marked in colour, the specimen can quickly be evaluated as ‘Pass’ (green) or ‘Fail’ (red).

The software determines the following values:
- total radial composite deviation $F_{i''}$
- tooth-to-tooth radial composite deviation $f_{i''}$
- runout deviation by composite test F_r''
- short-wave component f_k''

Additionally, when machine has been calibrated:
- centre distance A_a''
- dimension over balls M_dK
- tooth thickness S_n
- span size W_k.

Further software properties:
- Easy input and amending of inspection options
- After the inspection, the workpiece will be turned to the position of maximum deviation (values are selectable)
- Language features:
 - German, English, Spanish, French, Portuguese, Polish, Hungarian and Chinese are available
 - Program language and output language can be selected separately (Unicode support)
 - Easy data exchange when corporate languages are different
- Archiving function: every single measurement data is saved
- Central, statistical analysis due to interfaces (qs-STAT®, CASQ-it 9000 and internal Ethernet-systems)
Retrofit

FRENCO retrofits earlier double flank gear roll inspection testers with the powerful measuring electronics MEG 32 and the evaluation software FGI pro. The upgrade is ideal for devices with manual evaluation, pen recorder or earlier electronics.

For retrofitting, please send the machine to FRENCO GmbH. The device will be dismantled, cleaned and smaller repairs will be carried out. Furthermore, probe and motor will be replaced and an emergency-stop button will be installed (unless one is already installed).

The double flank gear roll tester will be completely refurbished!

The following devices can be retrofitted:
- Mahr 894B, 896B, 898B, 898C
- Hommel ZWG8305, ZWG8315
- Höfler ZW300
- other types on request
Gear Flank Analyser

The method of gear flank analysing is based on the single flank gear test. A specially designed roll master ensures a contact ratio of less than one. Thus the gears briefly loose contact in-between two adjacent teeth. As a result, the specimens’ deviations can be assigned precisely to the tooth number. The actual measurement takes place during the rolling process. The driving path is only a means of transportation and is irrelevant for the measurement.

Furthermore, the roll master is designed to measure the specimen in more than 13 independent planes. In short:

Gear flank analysing conducts an individual error test of all teeth in several planes.

Measurement with contact ratio less than 1

Only the inspection areas of the gradient will be evaluated.

- **driving**
- **inspecting**
- **driving**

complete measuring results

- **transportation**
- **rolling**
- **transportation**

variation

angle of rotation
Measuring tasks:

Depending on the number of teeth and the device, the entire gear profile can be scanned within 3 to 13 minutes. It is possible to evaluate a large number of other parameters, besides the usual parameters, such as profile, pitch and runout, with the measuring time remaining the same.

Gear flank analysing measuring allows an extensive and still efficient quality evaluation.

The machines are designed for use in production and may replace the inspection in a measuring room. Whenever there is an error, the reaction time is extremely short. The gear flank analysing machines only render their full contribution when high volumes and consistent gear geometries are measured.

The number of measurement amounts to 60-100 per day and machine.
Gear Flank Analyser WSG

Gear flank analysing machines WSG use hedgehog roll masters. These are master gears with tooth segments that are adapted to the gear geometry to be measured.

Due to the segments vertical offset it is possible to evaluate the workpiece geometry in several planes.

This ensures that the profiles of all tooth flanks are detected in several planes, which enables a calculation of the tooth traces.

Gear flank analyser with double spindle:
cuts measuring time by half

Hedgehog roll master
Gear Flank Analyser WSM

Gear flank analysing is based on the principle of the single flank gear roll inspection and the roll master is adjusted to the gear profile to be inspected. Two rotations of the master complete the inspection of the set plane of the workpiece. Rotary axis A of the workpiece and rotary axis B of the roll master are electrically connected. Simultaneous movement of axis Z1 and axis Z2 enables measurements in as many planes as necessary.

The tip centre distance and the position of the gear profile to be inspected are logged in the inspection plan and automatically controlled during the process.

The x axis controls the centre distance and is positioned automatically.

Depending on the workpiece, the measurement in 10 planes takes about 4 minutes.

A = axis of rotation of the workpiece
B = axis of rotation of the disc scanning master
Z1 = upper centre position
Z2 = lower centre position
X = centre distance
Methods of Evaluation

The latest version of the evaluation software supports various graphic charts and evaluations- including unique and basically new assessments for the completely detected tooth flanks.

Standard evaluation of profile, helix (of four teeth), pitch and runout plus profile and helix of all teeth, detecting the worst tooth. All important values are clearly displayed in various charts.

Quality control charts can be selected separately for all attributes depending on the processing machine. An overview of all evaluations is given.

Topographical evaluation of the measurement results, Fast Fourier Transform (FFT) analysis for roll distance and acceleration (per measurement and FFT history) and calculated measurement results of a single flank gear rolling inspection are displayed.

REANY analysis of the measurement results represented by various charts and illustrations e.g. Reany Overview, position of axis and pitch. The software includes a correction of the axis.

This evaluation is available for both, gear flank analyser and all-teeth measurement on coordinate measuring machines.
Gear and Spline Inspection to Accredited Standards

Monitoring of Inspection Equipment
Workpiece Inspections
Online Inspection Certificate
DAkkS-Calibration
VDA-5-Certificate
Analysis of Deviations

Inspection services
Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleG 08
Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the calibration laboratory

Frenco GmbH, Verzahnungstechnik, Messtechnik
Jakob-Bailer-Straße 3, 90538 Altdorf

is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out calibrations in the following fields:

Dimensional Quantities
 Length
 Gear Quantities

The accreditation certificate shall only apply in connection with the notice of accreditation of 07.03.2012 with the accreditation number D-K-15199-01 and is valid until 06.03.2017. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 4 pages.

Registration number of the certificate: D-K-15199-01-00

Braunschweig, 07.03.2012

Dr. Michael Hoff
Head of Division

This document is a translation. The definitive version is the original German accreditation certificate.
FRENCO is the first address for gear and spline inspection in Germany. Our equipment enables us to measure nearly all types of gears and splines. A constant room temperature, best quality equipment and top qualified employees guarantee highest precision. The traceability to PTB (the national metrology institute of Germany) verified artefacts - from measuring pins to profile, tooth trace and pitch artefacts - ensure reliable measurement results.

FRENCO’s calibration laboratory is awarded accredited conformity assessment body status by DAkkS in accordance with EN ISO/IEC 17025 (registration number D-K-15199-01-00). FRENCO is therefore entitled to calibrate cylindrical gears (all features) and issue a DAkkS calibration certificate. You will receive the most accurate DAkkS calibration throughout Germany.
Monitoring of Inspection Equipment

Scope of services

All measuring and inspection equipment for external and internal gearing, such as gauges, master gears, taper mounting mandrels, instruments for size inspection and others are inspected. Standard monitoring of inspection equipment conforms to the directive VDI 2618 sheet 1 and includes the following services:

- Verification of the number of items delivered
- Cleaning
- Demagnetisation
- Visual inspection for damage
- Determination of the gear and spline data by means of an existing drawing, or
- Determination of the gear and spline data by means of standards, or
- Creation of an inspection equipment drawing (additional charge)
- Removal of smaller damage on the gearing, whenever possible
- Size inspection of the gearing by hand with Abbe length measuring device or the length comparator
- Form inspection such as profile, tooth trace, pitch and radial runout on our measuring machines
- Issuing of an inspection certificate in German or English
- Electronic archiving of the measurement results at FRENCO
- Providing the measurement results online at www.frenco.de
- Re-marking (additional charge)
- Verification of workpiece design (on request)
- Packing in a rust protective foil

Note: If the measurement is terminated early due to detection of a feature outside the tolerance, the price will be reduced according to actual time and effort in the calibration laboratory.

Delivery time

Delivery is approx. 2 weeks from receipt of the inspection equipment or measurement items (in Altdorf). The delivery time can be reduced to 3 working days (surcharge). Delivery for DAkkS calibrations is approx. 10 weeks from receipt (in Altdorf). Shorter delivery times are also possible on request.

Documentation

An inspection certificate is issued for each inspection object. This includes:

- Inspection equipment data, nominal sizes, actual sizes and the overall evaluation on the first page.
- Depending on the delivery volume and type of instrument, the graph of the gear inspection centre including profile and tooth trace, pitch and radial runout on the inside pages.
- Explanation abbreviations, traceability and measurement uncertainties on the last page.

Delivery

We kindly ask you to send the measuring instruments to us free of charge and to ensure that the goods are packed accordingly in order to avoid damage. Goods will be returned ex works via parcel service. Please inform us, if required, of preferred carrier.
Workpiece Inspection

Workpieces gearing can be inspected in a number of ways:

- Individual form inspection on gear measuring machines (profile, tooth trace, pitch and radial runout)
- Double flank gear test on a FRENCO gear tester. A master gear and clamping equipment is required.

Individual form inspection can be carried out on external and internal gears as well as involute, serration and straight-sided splines. We can inspect the following workpieces:

- Max. diameter of workpiece: 400 mm (worm gears 260 mm)
- Max. length of workpiece: 650 mm
- Max. vertical measuring range: 500 mm
- Min. module: 0.1 mm (0.3 mm internal gears)

Additional possible measurements:

- Position of functional faces (circles, cylinders, plan faces etc.) in reference to the gear/spline axis
- Topography of individual teeth or ‘All-tooth-measurement’
- Roughness and contour measurements
Online Inspection Certificate

The inspection certificates for inspection equipment and workpieces calibrated by FRENCO, can be downloaded in PDF format from our website. A detailed description can be found on www.frenco.de.

Note:
Before destroying the paper certificate, please save the record ID and order number. Without these the online certificate cannot be retrieved.
FRENCO’s calibration laboratory is awarded accredited conformity assessment body status by DAkkS in accordance with EN ISO/IEC 17025 (registration number D-K-15199-01-00) for all essential gear features.

Tooth trace artefacts and involute artefacts as well as pitch artefacts and artefacts for pitch, radial runout and dimension over measuring circle can be DAkkS calibrated.

The accreditation is valid for the most commonly required measuring ranges. Details of the accreditation range can be found on www.dakks.de.

Artefacts which are outside this accreditation range can be factory calibrated.

The customer will receive a (DAkkS) calibration certificate (multiple pages) with explanations regarding the measuring method, information on the location determination of the measured item and of course with specification of the measurement uncertainties.
... and IC-Artefacts

The smallest measuring uncertainty to be specified depends on the size of the artefact. Measuring uncertainty of DAkkS calibrations lies within the following range:

<table>
<thead>
<tr>
<th></th>
<th>U (k=2)</th>
<th>U (k=2)</th>
<th>U (k=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>(F_\alpha : 1.5 - 2.1 \ \mu m)</td>
<td>(f_{HA_\alpha} : 1.1 - 1.9 \ \mu m)</td>
<td>(f_{HA_\alpha} : 0.9 - 1.0 \ \mu m)</td>
</tr>
<tr>
<td>Tooth trace</td>
<td>(F_\beta : 1.5 - 2.0 \ \mu m)</td>
<td>(f_{HA_\beta} : 1.1 - 1.8 \ \mu m)</td>
<td>(f_{HA_\beta} : 0.9 - 1.0 \ \mu m)</td>
</tr>
<tr>
<td>Pitch/ radial runout</td>
<td>(F_p : 0.7 \ \mu m)</td>
<td>(f_p : 0.6 \ \mu m)</td>
<td>(F_r : 1.0 \ \mu m)</td>
</tr>
<tr>
<td>Size over measuring circles</td>
<td>(M_{unc} : 1.2 \ \mu m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On request FRENCO issues a VDA-5 certificate for all measuring instruments. This certificate is designed according to VDA 5 and contains the measuring uncertainty of the measuring system. It enables an easier determination of the measuring uncertainty of the inspection process in accordance with VDA 5, as the measuring uncertainty of the inspection instrument only has to be inserted. Moreover, parameters such as \(Q_{MS} \), \(\text{TOL}_{\text{MIN-UMS}} \), \(C_g \), and \(C_gk \) - which are also indicators for the gauge capability of an instrument - are listed on the certificate.

Uncertainty of the measuring system UMS according to VDA 5
Deviation Analysis

The measuring results from gear measurements taken on-site are digitally filed and can be used in a gear and spline analysis program.

This program can be used to:
- change the position of axis,
- overlay multiple measuring results for comparisons,
- select representations depending on the tooth thickness,
- correct machine settings (profile grinding),
- detect disturbances in the production process,
- simulate changes of the gear and spline data,
- generate new gear and spline data.

This analysis program helps to understand correlations, find reasons for and detect sources of faults. Moreover, it features the ability to change parameters quickly and interactively. The most important feature is, however, that the data output will be given in a way familiar to the user, as a measuring result.
‘All-Tooth-Measurement’ with REANY Evaluation

What is an ‘all-tooth-measurement’?
An ‘all-tooth-measurement’ is defined here at FRENCO’s as the capture of several profiles and tooth traces of all teeth. This means nearly the entire gear or spline is measured. The relation between the flanks is maintained, which is the main difference to topography, where individual teeth without any reference to each other are included.

What is a REANY evaluation?
REANY is short for reality analysis. It is a novel evaluation method of topological deviations of the tooth flanks. This methods allows, for example, an evaluation of dimensional deviations and pitch deviations along the entire face width. It is also possible to determine the positional deviation of the wheel axis, to eliminate deviations via the software and to receive an unprecedented wealth of information with just one single measurement.

The long measuring time is worth every second!
A total error inspection, like a double flank gear rolling inspection, is often carried out in production environments. If parts are rejected a cause must quickly and precisely be identified. The usual sampling inspection soon reaches its limits and additional measurements are required. The long measuring time is worth every second, thanks to REANY. You will learn everything about the inspected item with brand new representations and possibilities.

Comprehensive and individual consultation is included when placing an order with FRENCO.
Know-How-Transfer
- Up-To-Date Knowledge

Software
Training, seminars and workshops
Consulting and calculations
Literature and documentations

Goal-oriented and of practical benefit for the user
General Information

The right software makes work easier. FRENCO offers two software packages, which assist in handling and designing of splines:

FRENCO GmbH
Jakob-Baier-Straße 3
90518 Altdorf
Tel.: +49 (0) 9187/9522-0
Fax.: +49 (0) 9187/9522-40
E-Mail: frenco@frenco.de

Please visit our homepage www.frenco.de where you will find additional information on our software packages and demo versions.

Software Spline Standards

Design of spline profiles

Data from the following spline standards DIN 5480 (Germany), ANSI B92.1 (USA), ISO 4156 (International) is included in the Software Spline Standards. Spline profiles can be designed similar to the standard or manually as required.

Main menu

- Toolbar for a quick access to all functions
- Clearly arranged input mask

Spline Standards

- Standard-compliant design of spline profiles

Spline Calculator

- To calculate the spline data and inspection dimensions of spline profiles with involute flanks and serration flanks
Manual entry

The manual entry allows for the required spline data to be entered independent of any standard. The tolerances can be in accordance with the standard, as and when required.

Design in accordance with the relevant standard

If a spline is designed in accordance with, e.g. DIN 5480, a simplified dialog box opens.

Generation of data set

Once the spline data has been entered, a dataset will be created which includes all entered and calculated data. It is also possible to graphically display the entire spline profile, the spline shape (with or without measuring circle) and the tolerance zone.
Software Spline Calculator

Calculating the spline data and inspection dimensions

The Spline Calculator software allows for a quick and uncomplicated calculation of the spline data and inspection dimensions of internal and external...

...*cylindrical splines with serrated flanks*

![Image of serrated flanks calculation]

...*cylindrical splines with involute flanks*

![Image of involute flanks calculation]

The software can be used to convert inspection dimensions, which may be given in various shapes and forms, into other parameters. The number of teeth, module, helix and pressure angle parameters are used to automatically calculate all other parameters, which can be subsequently modified, such as dimension over measuring circle, tooth thickness etc.
The gear profile can be displayed, as is the case with the Spline Standards Software, with or without measuring circle. Any required measuring circle flats are calculated automatically.

The Spline Calculator is a hands-on tool to slowly approach the required tooth shape and the most suitable measuring circle. Any modifications are immediately displayed in the diagram.

For CAD systems, up to 100 involute points can be calculated for a flank and saved as a text file. This makes it easier to draw up gearing profiles in CAD.

The Spline Calculator also includes calculation bases for fillet radii and full fillets ... and special calculations such as rolling lengths and rolling angle.
Training, Seminars and Workshops

It is difficult to fully understand the complex field of gears and splines. Even specialists will only be proficient in certain parts. FRENCO has a unique set of experience at its disposal, by having consistently focussed on gear and spline production metrology for more than 30 years.

Ongoing development and intensive standardisation work ensure that this knowledge keeps on growing. Wherever possible, this knowledge is passed on.

FRENCO offer various training programs on gearing. They are held in cooperation with the TAW (Technical Academy Wuppertal) at their training facilities.

It is also possible to hold certain training programs on-site at the customers’ premises.

More detailed information on the respective training programs can be found in our brochure KS and on our website www.frenco.de.

Splines are a technical fringe subject and are not included in any syllabus for engineering sciences. There are lectures at universities and complex literature available on running gears like cylindrical gears, bevel gears and worm gears. There are spline standards but there is not even a single book on splines. Frenco offer a wide range of documentation on splines, plus relevant seminars.

The spline seminars (part 1 and 2) are held over 2 days, either at the TAW training facilities in Altdorf, or, on request, on-site at your premises.

To register and for more information on these seminars, please visit www.taw.de
Spline Seminars

Basics:
1. Spline geometry
2. The classification of spline fits
3. Tolerance limits actual and effective
4. Workpiece representation on drawings
5. Summary of current spline standards

Quality Assurance:
1. Short recap of the basics
2. Summary of quality features
3. Inspection method of the size ‘actual’
4. Inspection method of the size ‘effective’
5. Efficiency
6. Inspection of individual deviations
7. Inspection of positional deviations

Additional Workshop at the Customer’s Premises
Practical application of splines in your area

Example of topics:
1. Process capability
2. Spline gauge technology
3. Circumferential backlash measuring systems
4. Profiled clamping systems
5. Working with gear and spline standards
6. Design of splines without adhering to any standard
7. The position of the spline axis

Customised Training Courses
FRENCO also offer training programs at your premises on subjects that are currently relevant to you.

Example of topics:
1. Introduction to splines for newcomers
2. Increasing existing knowledge
3. Corrections of existing drawings, design of your parts
4. Monitoring of inspection equipment, training on pin dimension inspection

Gear Seminar
This seminar is aimed at technicians and engineers who want to get a basic understanding of gears. It assumes some general knowledge of the metal working industry.

Basics:
1. Various types of gearing
2. The involute as a flank form
3. Spur gear pair
4. Spur gears
5. Summary of quality features
6. Inspection of the actual size
7. Rolling inspection
8. Inspection of individual deviations
9. Inspection of positional deviations
Support

Frenco’s specialists offer their help for a range of different problems.

Creation and revision of gear and spline standards:

Gear and spline measuring equipment evaluations

Tolerancing of drawings
Inspection plans
Measurement uncertainties

Solving measuring tasks with specific problems

Research into basic principles
Research assignments
Practical implementation of ideas
Calculation

Profile modifications for shrinking and forming processes ISO data formats for NC machines DFX-files

Gear design

3D gear design
OF Documentations

The OF documentation includes knowledge transfer of gears and splines, simple explanations, no longer available standards and educational games. They are, at the same time, the only spline literature that is available other than spline standards.

FRENCO books:	Summary of documents on one issue
OFL literature:	Easy understanding explanations of known knowledge
OFS descriptions:	Explanations of technical correlations
OFD definitions:	Definitions of not general proven correlations

For prices see the current single brochure KD.

FRENCO Books

Volume 1
Splines
Quality assurance
154 pages
item no. KD-0101

1. Gears and splines (former OFL 01)
2. Quality assurance of splines overview (former OFS 10)
3. Inspection of splines with measuring machines (former OFD 13)
4. Control of manufacturing process (former OFS 01)
5. Actual and effective inspection methods (former OFS 04)
6. Actual and effective inspection instruments (former OFS 05)
7. Effective fit clearance (former OFS 03)
8. Effective backlash tolerance limit (former OFS 18)
9. One flank taper masters (former OFD 03)
10. Helical Splines (former OFS 14)

Volume 2
Splines
The position of the spline axis
106 pages
item no. KD-0102

1. Tolerances of location (former OFD 01 and OFS 06)
2. Clamping systems for splines (former HWS-T)
3. Variation of angularities (former OFD 04)

Volume 3
Splines
Standards and Calculation
122 pages
item no. KD-0103

1. List of standards (former OFS 24)
2. Summary of spline standards (former OFS 13)
3. Explanation of spline standards (former OFL 03)
4. Spline design without use of standards (former OFL 02)

Volume 4
Gears*
Quality assurance
178 pages
item no. KD-0104

1. Gear train (former OFS 19)
2. Dimensions and tolerances (former OFS 20)
3. The evolvent (former OFS 17)
4. History of gear measurement (OFS 2)
5. Rolling Inspection (OFS 09)
6. Inspection of individual deviation (OFS 11)
7. Deviation analysis (former OFS 12)
8. Different measurement methods – different results (OFD 12)

*These documents have not yet been translated into English. If they are ordered, delivery might be a little delayed.
OFL Literature

Only available in above mentioned books:

<table>
<thead>
<tr>
<th>order no</th>
<th>subject</th>
<th>title</th>
<th>included in book</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFL 01</td>
<td>Involute splines</td>
<td>Quality assurance</td>
<td>Volume 1</td>
</tr>
<tr>
<td>OFL 02</td>
<td>Splines</td>
<td>Spline design without use of standards</td>
<td>Volume 3</td>
</tr>
<tr>
<td>OFL 03</td>
<td>Splines</td>
<td>Explanation of spline standards</td>
<td>Volume 3</td>
</tr>
<tr>
<td>OFL 06</td>
<td>Gears and Splines</td>
<td>Formulas inspection dimensions</td>
<td>Volume 3</td>
</tr>
</tbody>
</table>

Available as separate documents:

<table>
<thead>
<tr>
<th>order no</th>
<th>subject</th>
<th>title</th>
<th>pages</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFL 05</td>
<td>Involute Splines</td>
<td>Inspection Rules for metrology instruments</td>
<td>67</td>
<td>01/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Statistical tolerance limit STA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Spline gauges</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Spline gauge ring with one flank master</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>plug gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Profiled setting master</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Master gears</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. One flank taper arbor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Variable 3-disc indicating gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Runout inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>soft metric version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 07-1</td>
<td>Splines</td>
<td>USA Standard ANSI B 92.1</td>
<td>8</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changes in 1996 edition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 08</td>
<td>Splines</td>
<td>USA Standard ANSI B 92.2 M</td>
<td>254</td>
<td>1989</td>
</tr>
<tr>
<td>order no</td>
<td>subject</td>
<td>title</td>
<td>pages</td>
<td>version</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>OFL 11</td>
<td>Splines and Gear</td>
<td>Dictionary</td>
<td>66</td>
<td>01/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>German-English</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>English-German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 12</td>
<td>Splines and Gear</td>
<td>Dictionary</td>
<td>28</td>
<td>03/15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>German-English-Italian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 13</td>
<td>Involute Serrations</td>
<td>JIS B 1602 – 1961</td>
<td>22</td>
<td>1961</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japanese Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 14</td>
<td>Involute Splines</td>
<td>JIS D 2001 – 1959</td>
<td>40</td>
<td>1959</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japanese Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 15</td>
<td>Metrology of gears and splines</td>
<td>FRENCO –pedia</td>
<td>40</td>
<td>05/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encyclopaedia of metrology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 16</td>
<td>Splines</td>
<td>Manual for Technicians</td>
<td>109</td>
<td>03/08</td>
</tr>
<tr>
<td>OFL 17</td>
<td>Splines</td>
<td>Effity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Educational game to learn about and understand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>splines within the tolerance chart. 10 sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>parts, 6 measuring instruments and a coloured</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>instruction manual.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFL 17-1</td>
<td>Splines</td>
<td>Effity, separate instructions</td>
<td>36</td>
<td>2005</td>
</tr>
</tbody>
</table>

Notes:
- The table provides a summary of various publications related to splines and gear metrology.
- The titles include dictionaries, standards, and an educational game.
- The pages vary from 22 to 109, and the versions range from 1959 to 2015.
- The educational game, **Effity**, is described as an interactive tool for learning about and understanding splines.
OFS Descriptions

Only available in above mentioned books:

<table>
<thead>
<tr>
<th>order no</th>
<th>subject</th>
<th>title</th>
<th>included in book</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFS 01</td>
<td>Splines</td>
<td>Control of manufacturing process</td>
<td>Volume 1</td>
</tr>
<tr>
<td>OFS 02</td>
<td>Gears and Splines</td>
<td>History of gear artefacts</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 04</td>
<td>Splines</td>
<td>Actual and effective inspection methods</td>
<td>Volume 3</td>
</tr>
<tr>
<td>OFS 05</td>
<td>Splines</td>
<td>Actual and effective inspection instruments</td>
<td>Volume 1</td>
</tr>
<tr>
<td>OFS 06</td>
<td>Gears and splines</td>
<td>Methods of determining the axis of spline and gear</td>
<td>Volume 2</td>
</tr>
<tr>
<td>OFS 09</td>
<td>Gears</td>
<td>Gear rolling inspection</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 10</td>
<td>Gears and splines</td>
<td>Quality assurance of gears and splines</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 11</td>
<td>Gears and splines</td>
<td>Analytical inspection</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 12</td>
<td>Gears and splines</td>
<td>Deviation analysis</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 13</td>
<td>Splines</td>
<td>Summary of spline standards</td>
<td>Volume 3</td>
</tr>
<tr>
<td>OFS 14</td>
<td>Splines</td>
<td>Helical splines</td>
<td>Volume 1</td>
</tr>
<tr>
<td>OFS 17</td>
<td>Gears and splines</td>
<td>The involute, simple explanation</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 18</td>
<td>Splines</td>
<td>Effective backlash tolerance limit</td>
<td>Volume 1</td>
</tr>
<tr>
<td>OFS 19</td>
<td>Gears</td>
<td>Mating gears, rolling condition, revolutions, center distance, profile shift</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 20</td>
<td>Gears</td>
<td>Deviation of size, tolerances, ranges of quality</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFS 24</td>
<td>Splines</td>
<td>Listing of standards</td>
<td>Volume 3</td>
</tr>
<tr>
<td>OFS 25</td>
<td>Splines</td>
<td>The position of the spline axis</td>
<td>Volume 3</td>
</tr>
<tr>
<td>OFS 26</td>
<td>Splines</td>
<td>Inspection of splines</td>
<td>Volume 1</td>
</tr>
</tbody>
</table>

Available as separate documents:

<table>
<thead>
<tr>
<th>order no</th>
<th>subject</th>
<th>title</th>
<th>pages</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFS 03</td>
<td>Splines</td>
<td>Effective fit clearance</td>
<td>12</td>
<td>08/99</td>
</tr>
<tr>
<td>OFS 15</td>
<td>Gears and splines</td>
<td>Various types of gears and splines</td>
<td>8</td>
<td>02/05</td>
</tr>
<tr>
<td>OFS 23</td>
<td>Gears and splines</td>
<td>Production methods</td>
<td>20</td>
<td>01/06</td>
</tr>
<tr>
<td>OFS 28</td>
<td>Splines</td>
<td>Splines with serrations</td>
<td>78</td>
<td>03/10</td>
</tr>
<tr>
<td>OFS 29</td>
<td>Gears</td>
<td>Quality assurance</td>
<td>28</td>
<td>03/10</td>
</tr>
<tr>
<td>OFS 30</td>
<td>Gears</td>
<td>Quality assurance</td>
<td>20</td>
<td>04/11</td>
</tr>
</tbody>
</table>
OFD Definitions

Only available in above mentioned books:

<table>
<thead>
<tr>
<th>order no</th>
<th>subject</th>
<th>title</th>
<th>included in book</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFD 01</td>
<td>Splines</td>
<td>Spline tolerances of location</td>
<td>Volume 2</td>
</tr>
<tr>
<td>OFD 03</td>
<td>Spline gages</td>
<td>One flank taper masters</td>
<td>Volume 1</td>
</tr>
<tr>
<td>OFD 04</td>
<td>Splines</td>
<td>Spline variations of angularity</td>
<td>Volume 2</td>
</tr>
<tr>
<td>OFD 12</td>
<td>The dimension tooth thickness</td>
<td>Various measuring methods</td>
<td>Volume 4</td>
</tr>
<tr>
<td>OFD 13</td>
<td>Splines</td>
<td>Inspection of splines by the use of inspection machines</td>
<td>Volume 1</td>
</tr>
</tbody>
</table>

Available as separate documents:

<table>
<thead>
<tr>
<th>order no</th>
<th>subject</th>
<th>title</th>
<th>pages</th>
<th>version</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFD 10</td>
<td>Gear and spline high precision</td>
<td>Acceptance or rejection of gauges and masters with regard to the tolerance limits of size and form variations</td>
<td>24</td>
<td>03/12</td>
</tr>
<tr>
<td>OFD 11</td>
<td>Tolerance limits</td>
<td>Acceptance or rejection of specimen with regard to tolerance limits (ISO 14253)</td>
<td>20</td>
<td>11/12</td>
</tr>
</tbody>
</table>